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1 Motivation

For an application like HiggSignals [1], or in future combinations of Higgs data from dif-
ferent experiments, one important question is how to treat the correlated systematics. This
question arises specifically in two different aspects:

1. The contributions of the different Higgs production and decay modes to the relative
rate measurements [ in the search (sub)channels, in the following called observables,
may vary when using models differently from the SM. In this case, the uncertainty
matrix C of all observables needs to be re-evaluated.

2. For the interpretation of the Higgs rate measurements in different models the (corre-
lated) contribution of the model-dependent theory uncertainty needs to be disentangled
from other uncertainty sources, since they need to be treated differently from the SM.

If C is not publicly available (as is currently the case), or if the public information about
C is not detailed enough, the above tasks can not be fulfilled with full precision. Therefore,
we like to make a proposal for the presentation of correlated systematic uncertainties in
Higgs boson rate measurements, inspired by Ref. [2] and the procedure employed in the LEP
Higgs combination [3, 4]. Including this information in global analyses of the Higgs signal
strength measurements is expected to be of great importance, in particular in the future, as
statistical uncertainties are expected to be reduced faster than theoretical and presumably
also experimental systematic uncertainties.

2 Covariance matrix decomposition

Under the assumption, that experimental systematics and theory uncertainties can be treated
as Gaussian distributed uncertainties with only linear correlations!, the covariance matrix
of N signal rate measurements, fi; (i = 1,..., N), is given by

C =Ciy = piwoioy, (1)

'For a large number of uncertainty sources, the central limit theorem suggests that this assumption
approximately holds, no matter what the unknown probability density function of a given theory uncertainty
truly is.



where p;; is the correlation matrix for the different observables ¢ and 4, that are in this case
the measured rates in different (sub)channels of Higgs searches. This and all following co-
variance matrices preferably contain only relative uncertainties with respect to the measured
signal strengths, such that the absolute uncertainty is given by o; = Ao, - fi;, where Aoy is
the relative uncertainty. If an absolute systematic signal strength uncertainty is present in
the measurement, which is independent of ji;, relative and absolute uncertainties should be
decomposed.

However, Eq. (1), as simple as it seems, is neither directly useable for expressing uncer-
tainties of a variable number of measurements, nor for testing models that predict signal
strength contributions of the various signal topologies (i.e. in most cases the various produc-
tion modes included in an analysis) different than in the SM. In addition, it is not possible
to decompose C;;r or p;;r into different uncertainty sources, such as experimental systematics
(independent of the model) and theoretical uncertainties (model-dependent). Therefore, we
propose to employ an extended set of covariance matrices, describing the uncertainties and
their correlations in a complete way and for each analysis individually. This procedure relies
only on the assumptions of Gaussianity of the probability density functions and linearity of
the correlations, but not on implicit model assumptions.

In addition to ¢ and i’ denoting the observable in the (sub)channels, let j = 1,...,.J
enumerate the different channels (or signal topologies) considered within an analysis.? Let
furthermore k = 1, ..., K denote the different completely uncorrelated uncertainty sources
(e.g. statistics), [ = 1, ..., L the different +100 % correlated uncertainty sources (like typically
a lepton energy scale (LES) uncertainty) and m = 1,..., M the different —100 % correlated
uncertainty sources (like typically a tagging efficiency of a given category, where an increased
number of events in one category corresponds to a reduced number of events in an orthogonal
category). Not all observables need necessarily to be affected by all uncertainty sources, and
some observables might have opposite correlations for the same uncertainty source. Note
also that, while several observables might approximately be fully correlated with respect to
a given uncertainty source, they do not need to have the same relative uncertainty. This
makes the ansatz proposed here so general: The p;» in Eq. (1) are generally not only taking
the values 0, —1 or +1 but anything in between since they are the result of a convolution of
many different error sources, which contribute with different strength to each measurement.
However, the correlation factor for each individual error source k,l or m on any single
measurement ug can usually accurately be described as 0, —1 or +1. The aim of the following
discussion is to provide a framework to reliably provide the necessary information to calculate
C for every possible signal composition (of the signal topologies j) in each observable i and
the resulting, potentially different theory uncertainty of the signal rates. In other words,
this proposed procedure enables the derivation of the covariance matrix for every testable
model different to the SM.

We first introduce some basic definitions for the total signal strength of an observable and
how it can be decomposed in channel signal strengths and according weights. The weighted
signal strengths for the channels j of the signal strength measurement ¢ is defined by

al = wipd, (2)

2For an analysis targeting a single Higgs decay mode, these are typically the five LHC Higgs production
modes, {ggH, VBF, W H, ZH,ttH}. That could be further generalized, though.



where we using the definitions (following Ref. [1])
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for the individual signal strength and SM weights for the channel j. The SM weights carry

also an index 7 since they depend on the signal efficiencies €! of the analysis 7 in the channel

j. Using these definitions, the measured signal strength can be decomposed as
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assuming the efficiencies are identical for the investigated model and the SM.3

In order for the proposed procedure to work, note that the uncertainty sources k, [ and
m need to be labeled unambiguously. Then it is possible to report for each observable 7
individually, to what extent the channel j reacts to the uncertainty sources k, [ or m, namely
with the uncertainty o7 '™ = ;i Ag? "™ Thig information is independent of all
other analyses and can be combined with other observables in an unambiguous way for any
given signal composition.

For each analysis, the required values Aaf Aklormd o h01d be deduced for every analysis
channel ¢ by letting each signal contribution j vary in the profile likelihood limit setting
individually. Then, the variation of the best fit ag' = wg {7, (as opposed to just measuring ji; in
the analysis (sub)channel ¢ in the case of the full profile likelihood analysis) can be observed
for upward variations and downward variations of each nuisance parameter §%!°"™.  For
ranges of values of §%/°*™ which represent about a +1¢ variation of that nuisance parameter,
the median value of (o), is observed. Likewise, for a range of values of #%/°"™ which
represent a —1o variation, <a3 )down 18 Observed. Then, the uncertainty on the systematics
associated with %™ can be approximated as o/ = ((a!)up — (0?)down)/2. The
correlations +1 or —1 can be deduced by the upward or downward variation of &; for the
same @%1°r™ This procedure might be expensive on the computing side due to the required
high sampling density for several different values of #¥/°*™ but is in principle straight-
forward.

As a first approximation the output can be constrained to the dominant sources of sys-
tematic uncertainties while neglecting all sources with minor impact on the given measure-
ment. A computationally cheaper, albeit potentially less accurate method of extracting the
Ag? ™ Galues would be to fix each individual 6¥/°"™ consecutively, once to its +1 or
—10 values, as observed in a conventional profile likelihood fit. Then, the best fit values
& |up and 7| gown could be observed directly for each individual profile likelihood fit and

Aot conld be caleulated from them as above.

3The formalism can easily be generalized for the case where this assumption is not fulfilled.



The uncorrelated part of the (weighted) uncertainty matrix on the absolute errors on the
measured signal contributions of signal j to each observable ¢ can be written as:

- ) 9
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Due to the azj introduced here, any signal composition predicted by the model can be ac-
commodated. For the +100% correlated uncertainties, we can write

75’5l | gl Jsl
+100% /@’ i i i
(CHioow)iir = ] Ao ), Ao, (7)

Note that the product 045 a, should not be mistaken as a correlation factor. The correlation

coefficients pgf;/’l are all +1, hence the diagonal entries of the matrices C7/'! are weighted by
the same factors of a as the off-diagonal entries. Likewise, we write for the —100% correlated
part,

(CH Vi = £ al Aa)™ad, Ach™, (8)
where the + [-] sign is used for ¢ =i [i # 7].

The covariance matrices given in Eq. (6)-(8) are given in the most general form. They
j,{k,Lorm}

still hold in the case, where the relative uncertainties Ao; are approximately the same

for all channels j considered within the measurement, i.e. Ag? Aklorm AcgFlor™ It this
approximation holds*, the amount of information necessary from the experiments reduces
significantly, but the formalism does not change.

In addition to the re-weighting by « (accounting for changed signal compositions), the
individual uncertainties Aag Aklorm}an also be varied, which is necessary if, for instance,
the uncertainties of the model predictions are different than in the SM. Using the above
decomposition scheme, the covariance matrices C77" for the signal topologies j and j' can

be reconstructed at each point in the parameter space of the model by

133" 75’k 73’ gi'mo — 133’ i’ _1ig’
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From this, the overall covariance matrix for the signal rate observables, defined as C' =
P00y, is simply given for any given model point by

c=>cv. (10)
73!
Thus, an individual, re-weighted uncertainty matrix for the observables can be reconstructed
unambiguously at any model point, taking all individual correlations into account.
Note, that in general neither pl,, nor o} are identical to the SM quantities in the combined
approach in Eq. (1). To summarize, the specific advantages of the proposed procedure are:

1. All uncertainty sources can be individually re-weighted, e.g. theoretical uncertainties,
for each production mode.

4Note, that the approximation does obviously not hold in the presence of strong correlations among the
channels j of a single measurement, as e.g. typically introduced by a tagging efficiency, see the discussion
above.



2. All uncertainties can be re-weighted for each channel/signal topology (i.e. in most
cases for each Higgs production mode) in each observable, according to a different
signal composition as predicted by the model.

All that is needed for this procedure to work is, that the information Ag? Akband md £ the
uncorrelated, fully correlated, and fully anti-correlated relative uncertainties, respectively, of
the channel /signal topologies j considered in the measurement 7, is made publicly available.
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